Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58.401
Filter
1.
Cell Death Dis ; 15(4): 256, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600092

ABSTRACT

Stromal fibroblasts are a major stem cell niche component essential for organ formation and cancer development. Fibroblast heterogeneity, as revealed by recent advances in single-cell techniques, has raised important questions about the origin, differentiation, and function of fibroblast subtypes. In this study, we show in mammary stromal fibroblasts that loss of the receptor tyrosine kinase (RTK) negative feedback regulators encoded by Spry1, Spry2, and Spry4 causes upregulation of signaling in multiple RTK pathways and increased extracellular matrix remodeling, resulting in accelerated epithelial branching. Single-cell transcriptomic analysis demonstrated that increased production of FGF10 due to Sprouty (Spry) loss results from expansion of a functionally distinct subgroup of fibroblasts with the most potent branching-promoting ability. Compared to their three independent lineage precursors, fibroblasts in this subgroup are "activated," as they are located immediately adjacent to the epithelium that is actively undergoing branching and invasion. Spry genes are downregulated, and activated fibroblasts are expanded, in all three of the major human breast cancer subtypes. Together, our data highlight the regulation of a functional subtype of mammary fibroblasts by Spry genes and their essential role in epithelial morphogenesis and cancer development.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Membrane Proteins/metabolism , Signal Transduction , Cell Differentiation/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Fibroblasts/metabolism
2.
Breast Cancer Res ; 26(1): 72, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664825

ABSTRACT

BACKGROUND: Breast cancer, the most prevalent cancer in women worldwide, faces treatment challenges due to drug resistance, posing a serious threat to patient survival. The present study aimed to identify the key molecules that drive drug resistance and aggressiveness in breast cancer cells and validate them as therapeutic targets. METHODS: Transcriptome microarray and analysis using PANTHER pathway and StemChecker were performed to identify the most significantly expressed genes in tamoxifen-resistant and adriamycin-resistant MCF-7 breast cancer cells. Clinical relevance of the key genes was determined using Kaplan-Meier survival analyses on The Cancer Genome Atlas dataset of breast cancer patients. Gene overexpression/knockdown, spheroid formation, flow cytometric analysis, chromatin immunoprecipitation, immunocytochemistry, wound healing/transwell migration assays, and cancer stem cell transcription factor activation profiling array were used to elucidate the regulatory mechanism of integrin α11 expression. Tumour-bearing xenograft models were used to demonstrate integrin α11 is a potential therapeutic target. RESULTS: Integrin α11 was consistently upregulated in drug-resistant breast cancer cells, and its silencing inhibited cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) while restoring sensitivity to anticancer drugs. HIF1α, GLI-1, and EZH2 contributed the most to the regulation of integrin α11 and EZH2 expression, with EZH2 being more necessary for EZH2 autoinduction than HIF1α and GLI-1. Additionally, unlike HIF1α or EZH2, GLI-1 was the sole transcription factor activated by integrin-linked focal adhesion kinase, indicating GLI-1 as a key driver of the EZH2-integrin α11 axis operating for cancer stem cell survival and EMT. Kaplan-Meier survival analysis using The Cancer Genome Atlas (TCGA) dataset also revealed both EZH2 and integrin α11 could be strong prognostic factors of relapse-free and overall survival in breast cancer patients. However, the superior efficacy of integrin α11 siRNA therapy over EZH2 siRNA treatment was demonstrated by enhanced inhibition of tumour growth and prolonged survival in murine models bearing tumours. CONCLUSION: Our findings elucidate that integrin α11 is upregulated by EZH2, forming a positive feedback circuit involving FAK-GLI-1 and contributing to drug resistance, cancer stem cell survival and EMT. Taken together, the results suggest integrin α11 as a promising prognostic marker and a powerful therapeutic target for drug-resistant breast cancer.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Enhancer of Zeste Homolog 2 Protein , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Neoplastic Stem Cells , RNA, Small Interfering , Xenograft Model Antitumor Assays , Humans , Drug Resistance, Neoplasm/genetics , Female , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/mortality , Breast Neoplasms/therapy , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Animals , Mice , Epithelial-Mesenchymal Transition/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , RNA, Small Interfering/genetics , Cell Line, Tumor , Disease Progression , MCF-7 Cells , Cell Proliferation , Gene Expression Profiling
3.
PLoS One ; 19(4): e0301995, 2024.
Article in English | MEDLINE | ID: mdl-38635539

ABSTRACT

Breast cancer (BC) is the most common cancer among women with high morbidity and mortality. Therefore, new research is still needed for biomarker detection. GSE101124 and GSE182471 datasets were obtained from the Gene Expression Omnibus (GEO) database to evaluate differentially expressed circular RNAs (circRNAs). The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) databases were used to identify the significantly dysregulated microRNAs (miRNAs) and genes considering the Prediction Analysis of Microarray classification (PAM50). The circRNA-miRNA-mRNA relationship was investigated using the Cancer-Specific CircRNA, miRDB, miRTarBase, and miRWalk databases. The circRNA-miRNA-mRNA regulatory network was annotated using Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. The protein-protein interaction network was constructed by the STRING database and visualized by the Cytoscape tool. Then, raw miRNA data and genes were filtered using some selection criteria according to a specific expression level in PAM50 subgroups. A bottleneck method was utilized to obtain highly interacted hub genes using cytoHubba Cytoscape plugin. The Disease-Free Survival and Overall Survival analysis were performed for these hub genes, which are detected within the miRNA and circRNA axis in our study. We identified three circRNAs, three miRNAs, and eighteen candidate target genes that may play an important role in BC. In addition, it has been determined that these molecules can be useful in the classification of BC, especially in determining the basal-like breast cancer (BLBC) subtype. We conclude that hsa_circ_0000515/miR-486-5p/SDC1 axis may be an important biomarker candidate in distinguishing patients in the BLBC subgroup of BC.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , Female , RNA, Circular/genetics , Breast Neoplasms/genetics , MicroRNAs/genetics , Computational Biology , Biomarkers , Gene Regulatory Networks
4.
J Transl Med ; 22(1): 374, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637846

ABSTRACT

BACKGROUND: Inflammatory breast cancer (IBC) is the most pro-metastatic form of BC. Better understanding of its enigmatic pathophysiology is crucial. We report here the largest whole-exome sequencing (WES) study of clinical IBC samples. METHODS: We retrospectively applied WES to 54 untreated IBC primary tumor samples and matched normal DNA. The comparator samples were 102 stage-matched non-IBC samples from TCGA. We compared the somatic mutational profiles, spectra and signatures, copy number alterations (CNAs), HRD and heterogeneity scores, and frequencies of actionable genomic alterations (AGAs) between IBCs and non-IBCs. The comparisons were adjusted for the molecular subtypes. RESULTS: The number of somatic mutations, TMB, and mutational spectra were not different between IBCs and non-IBCs, and no gene was differentially mutated or showed differential frequency of CNAs. Among the COSMIC signatures, only the age-related signature was more frequent in non-IBCs than in IBCs. We also identified in IBCs two new mutational signatures not associated with any environmental exposure, one of them having been previously related to HIF pathway activation. Overall, the HRD score was not different between both groups, but was higher in TN IBCs than TN non-IBCs. IBCs were less frequently classified as heterogeneous according to heterogeneity H-index than non-IBCs (21% vs 33%), and clonal mutations were more frequent and subclonal mutations less frequent in IBCs. More than 50% of patients with IBC harbored at least one high-level of evidence (LOE) AGA (OncoKB LOE 1-2, ESCAT LOE I-II), similarly to patients with non-IBC. CONCLUSIONS: We provide the largest mutational landscape of IBC. Only a few subtle differences were identified with non-IBCs. The most clinically relevant one was the higher HRD score in TN IBCs than in TN non-IBCs, whereas the most intriguing one was the smaller intratumor heterogeneity of IBCs.


Subject(s)
Breast Neoplasms , Inflammatory Breast Neoplasms , Humans , Female , Inflammatory Breast Neoplasms/genetics , Inflammatory Breast Neoplasms/pathology , Breast Neoplasms/genetics , Retrospective Studies , Mutation/genetics , Genomics
5.
Cell Rep ; 43(4): 114121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38615320

ABSTRACT

Metabolic reprogramming is a hallmark of cancer, enabling cancer cells to rapidly proliferate, invade, and metastasize. We show that creatine levels in metastatic breast cancer cell lines and secondary metastatic tumors are driven by the ubiquitous mitochondrial creatine kinase (CKMT1). We discover that, while CKMT1 is highly expressed in primary tumors and promotes cell viability, it is downregulated in metastasis. We further show that CKMT1 downregulation, as seen in breast cancer metastasis, drives up mitochondrial reactive oxygen species (ROS) levels. CKMT1 downregulation contributes to the migratory and invasive potential of cells by ROS-induced upregulation of adhesion and degradative factors, which can be reversed by antioxidant treatment. Our study thus reconciles conflicting evidence about the roles of metabolites in the creatine metabolic pathway in breast cancer progression and reveals that tight, context-dependent regulation of CKMT1 expression facilitates cell viability, cell migration, and cell invasion, which are hallmarks of metastatic spread.


Subject(s)
Breast Neoplasms , Cell Movement , Creatine Kinase, Mitochondrial Form , Creatine Kinase , Disease Progression , Mitochondria , Reactive Oxygen Species , Humans , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Female , Creatine Kinase, Mitochondrial Form/metabolism , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Cell Line, Tumor , Animals , Neoplasm Invasiveness , Mice , Cell Survival , Gene Expression Regulation, Neoplastic , Neoplasm Metastasis
6.
ACS Sens ; 9(4): 2194-2202, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38621146

ABSTRACT

Breast cancer is one of the most diagnosed cancers worldwide. Precise diagnosis and subtyping have important significance for targeted therapy and prognosis prediction of breast cancer. Herein, we design a proximity-guaranteed DNA machine for accurate identification of breast cancer extracellular vesicles (EVs), which is beneficial to explore the subtype features of breast cancer. In our design, two proximity probes are located close on the same EV through specific recognition of coexisting surface biomarkers, thus being ligated with the help of click chemistry. Then, the ligated product initiates the operation of a DNA machine involving catalytic hairpin assembly and clusters of regularly interspaced short palindromic repeats (CRISPR)-Cas12a-mediated trans-cleavage, which finally generates a significant response that enables the identification of EVs expressing both biomarkers. Principle-of-proof studies are performed using EVs derived from the breast cancer cell line BT474 as the models, confirming the high sensitivity and specificity of the DNA machine. When further applied to clinical samples, the DNA machine is shown to be capable of not only distinguishing breast cancer patients with special subtypes but also realizing the tumor staging regarding the disease progression. Therefore, our work may provide new insights into the subtype-based diagnosis of breast cancer as well as identification of more potential therapeutic targets in the future.


Subject(s)
Breast Neoplasms , DNA , Extracellular Vesicles , Extracellular Vesicles/chemistry , Humans , Breast Neoplasms/genetics , Female , DNA/chemistry , DNA/genetics , Cell Line, Tumor , Biomarkers, Tumor , CRISPR-Cas Systems/genetics
7.
Cell Rep ; 43(4): 114116, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38625790

ABSTRACT

Overexpression of Cyclin E1 perturbs DNA replication, resulting in DNA lesions and genomic instability. Consequently, Cyclin E1-overexpressing cancer cells increasingly rely on DNA repair, including RAD52-mediated break-induced replication during interphase. We show that not all DNA lesions induced by Cyclin E1 overexpression are resolved during interphase. While DNA lesions upon Cyclin E1 overexpression are induced in S phase, a significant fraction of these lesions is transmitted into mitosis. Cyclin E1 overexpression triggers mitotic DNA synthesis (MiDAS) in a RAD52-dependent fashion. Chemical or genetic inactivation of MiDAS enhances mitotic aberrations and persistent DNA damage. Mitosis-specific degradation of RAD52 prevents Cyclin E1-induced MiDAS and reduces the viability of Cyclin E1-overexpressing cells, underscoring the relevance of RAD52 during mitosis to maintain genomic integrity. Finally, analysis of breast cancer samples reveals a positive correlation between Cyclin E1 amplification and RAD52 expression. These findings demonstrate the importance of suppressing mitotic defects in Cyclin E1-overexpressing cells through RAD52.


Subject(s)
Cyclin E , Genomic Instability , Mitosis , Oncogene Proteins , Rad52 DNA Repair and Recombination Protein , Humans , Cyclin E/metabolism , Cyclin E/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Oncogene Proteins/metabolism , Oncogene Proteins/genetics , DNA Replication , Cell Line, Tumor , DNA Damage , DNA/metabolism , DNA/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology
8.
JCO Precis Oncol ; 8: e2300647, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38635933

ABSTRACT

PURPOSE: To understand the mutational landscape of circulating tumor DNA (ctDNA) and tumor tissue of patients with hormone receptor-positive (HR+), human epidermal growth factor receptor-2-negative (HER2-) metastatic breast cancer (MBC) treated with abemaciclib + endocrine therapy (ET). METHODS: Blood samples for ctDNA and/or tissue samples were collected from abemaciclib-treated patients with HR+/HER2- MBC enrolled in the SCRUM-Japan MONSTAR-SCREEN project. Blood samples were collected before abemaciclib initiation (baseline) and at disease progression/abemaciclib discontinuation (post abemaciclib treatment). Clinical and genomic characteristics including neoplastic burden (measured by shedding rate and maximum variant allele frequency [VAF]) were assessed at baseline. Genomic alterations in ctDNA were compared in paired baseline and post abemaciclib treatment samples. RESULTS: All patients (N = 97) were female (median age, 57 years [IQR, 50-67]). In baseline ctDNA (n = 77), PIK3CA (37%), TP53 (28%), ESR1 (16%), and GATA3 (11%) were the most frequently mutated genes. Baseline tissue samples (n = 79) showed similar alteration frequencies. Among patients with baseline ctDNA data, 30% had received previous ET. ESR1 alteration frequency (35% v 8%; P < .01), median shedding rate (3 v 2), and maximum somatic VAF (4 v 0.8; both P < .05) were significantly higher in ctDNA from patients with previous ET than those without previous ET. In paired ctDNA samples (n = 33), PIK3CA and ESR1 alteration frequencies were higher after abemaciclib treatment than at baseline, though not statistically significant. Among the post-treatment alterations, those newly acquired were detected most frequently in FGF3/4/19 (18%); PIK3CA, TP53, CCND1, and RB1 (all 15%); and ESR1 (12%). CONCLUSION: We summarized the ctDNA and cancer tissue mutational landscape, including overall neoplastic burden and PIK3CA and ESR1 hotspot mutations in abemaciclib-treated patients with HR+/HER2- MBC. The data provide insights that could help optimize treatment strategies in this population.


Subject(s)
Aminopyridines , Benzimidazoles , Breast Neoplasms , Circulating Tumor DNA , Female , Humans , Male , Middle Aged , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Circulating Tumor DNA/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Early Detection of Cancer , ErbB Receptors , Genomics , Japan , Aged
9.
Breast Cancer Res ; 26(1): 70, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654332

ABSTRACT

BACKGROUND: Basal-like breast cancer (BLBC) is the most aggressive subtype of breast cancer due to its aggressive characteristics and lack of effective therapeutics. However, the mechanism underlying its aggressiveness remains largely unclear. S-adenosylmethionine decarboxylase proenzyme (AMD1) overexpression occurs specifically in BLBC. Here, we explored the potential molecular mechanisms and functions of AMD1 promoting the aggressiveness of BLBC. METHODS: The potential effects of AMD1 on breast cancer cells were tested by western blotting, colony formation, cell proliferation assay, migration and invasion assay. The spermidine level was determined by high performance liquid chromatography. The methylation status of CpG sites within the AMD1 promoter was evaluated by bisulfite sequencing PCR. We elucidated the relationship between AMD1 and Sox10 by ChIP assays and quantitative real-time PCR. The effect of AMD1 expression on breast cancer cells was evaluated by in vitro and in vivo tumorigenesis model. RESULTS: In this study, we showed that AMD1 expression was remarkably elevated in BLBC. AMD1 copy number amplification, hypomethylation of AMD1 promoter and transcription activity of Sox10 contributed to the overexpression of AMD1 in BLBC. AMD1 overexpression enhanced spermidine production, which enhanced eIF5A hypusination, activating translation of TCF4 with multiple conserved Pro-Pro motifs. Our studies showed that AMD1-mediated metabolic system of polyamine in BLBC cells promoted tumor cell proliferation and tumor growth. Clinically, elevated expression of AMD1 was correlated with high grade, metastasis and poor survival, indicating poor prognosis of breast cancer patients. CONCLUSION: Our work reveals the critical association of AMD1-mediated spermidine-eIF5A hypusination-TCF4 axis with BLBC aggressiveness, indicating potential prognostic indicators and therapeutic targets for BLBC.


Subject(s)
Breast Neoplasms , Cell Proliferation , 60599 , Gene Expression Regulation, Neoplastic , Lysine/analogs & derivatives , Peptide Initiation Factors , RNA-Binding Proteins , Spermidine , Transcription Factor 4 , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Peptide Initiation Factors/metabolism , Peptide Initiation Factors/genetics , Mice , Animals , Spermidine/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Transcription Factor 4/metabolism , Transcription Factor 4/genetics , Cell Line, Tumor , Promoter Regions, Genetic , Adenosylmethionine Decarboxylase/metabolism , Adenosylmethionine Decarboxylase/genetics , Cell Movement/genetics , DNA Methylation , Prognosis , SOXE Transcription Factors/metabolism , SOXE Transcription Factors/genetics
10.
Commun Biol ; 7(1): 493, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658803

ABSTRACT

Deconvolution is an efficient approach for detecting cell-type-specific (cs) transcriptomic signals without cellular segmentation. However, this type of methods may require a reference profile from the same molecular source and tissue type. Here, we present a method to dissect bulk proteome by leveraging tissue-matched transcriptome and proteome without using a proteomics reference panel. Our method also selects the proteins contributing to the cellular heterogeneity shared between bulk transcriptome and proteome. The deconvoluted result enables downstream analyses such as cs-protein Quantitative Trait Loci (cspQTL) mapping. We benchmarked the performance of this multimodal deconvolution approach through CITE-seq pseudo bulk data, a simulation study, and the bulk multi-omics data from human brain normal tissues and breast cancer tumors, individually, showing robust and accurate cell abundance quantification across different datasets. This algorithm is implemented in a tool MICSQTL that also provides cspQTL and multi-omics integrative visualization, available at https://bioconductor.org/packages/MICSQTL .


Subject(s)
Proteomics , Humans , Proteomics/methods , Quantitative Trait Loci , Algorithms , Transcriptome , Proteome , Female , Gene Expression Profiling/methods , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Brain/metabolism
11.
Epigenetics ; 19(1): 2343593, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38643489

ABSTRACT

Previous studies have indicated that histone methylations act as mediators in the relationship between oestrogen receptor (ER) and breast cancer prognosis, yet the mediating role has never been assessed. Therefore, we investigated seven histone methylations (H3K4me2, H3K4me3, H3K9me1, H3K9me2, H3K9me3, H3K27me3 and H4K20me3) to determine whether they mediate the prognostic impact of ER on breast cancer. Tissue microarrays were constructed from 1045 primary invasive breast tumours, and the expressions of histone methylations were examined by immunohistochemistry. Multifactorial logistic regression was used to analyse the associations between ER and histone methylations. Cox proportional hazard model was performed to assess the relationship between histone methylations and breast cancer prognosis. The mediation effects of histone methylations were evaluated by model-based causal mediation analysis. High expressions of H3K9me1, H3K9me2, H3K4me2, H3K27me3, H4K20me3 were associated with ER positivity, while high expression of H3K9me3 was associated ER negativity. Higher H3K9me2, H3K4me2 and H4K20me3 levels were associated with better prognosis. The association between ER and breast cancer prognosis was most strongly mediated by H4K20me3 (29.07% for OS; 22.42% for PFS), followed by H3K4me2 (11.5% for OS; 10.82% for PFS) and least by H3K9me2 (9.35% for OS; 7.34% for PFS). H4K20me3, H3K4me2 and H3K9me2 mediated the relationship between ER and breast cancer prognosis, which would help to further elucidate the impact of ER on breast cancer prognosis from an epigenetic perspective and provide new ideas for breast cancer treatment.


Subject(s)
Breast Neoplasms , Histones , Lysine/analogs & derivatives , Receptors, Estrogen , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Histones/metabolism , Histones/genetics , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Middle Aged , Prognosis , Methylation , Aged , Adult
12.
Breast Cancer Res ; 26(1): 67, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649964

ABSTRACT

Breast cancer exhibits significant heterogeneity, manifesting in various subtypes that are critical in guiding treatment decisions. This study aimed to investigate the existence of distinct subtypes of breast cancer within the Asian population, by analysing the transcriptomic profiles of 934 breast cancer patients from a Malaysian cohort. Our findings reveal that the HR + /HER2- breast cancer samples display a distinct clustering pattern based on immune phenotypes, rather than conforming to the conventional luminal A-luminal B paradigm previously reported in breast cancers from women of European descent. This suggests that the activation of the immune system may play a more important role in Asian HR + /HER2- breast cancer than has been previously recognized. Analysis of somatic mutations by whole exome sequencing showed that counter-intuitively, the cluster of HR + /HER2- samples exhibiting higher immune scores was associated with lower tumour mutational burden, lower homologous recombination deficiency scores, and fewer copy number aberrations, implicating the involvement of non-canonical tumour immune pathways. Further investigations are warranted to determine the underlying mechanisms of these pathways, with the potential to develop innovative immunotherapeutic approaches tailored to this specific patient population.


Subject(s)
Breast Neoplasms , Mutation , Phenotype , Receptor, ErbB-2 , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Asian People/genetics , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Exome Sequencing , Middle Aged , Receptors, Progesterone/metabolism , Receptors, Progesterone/genetics , Gene Expression Profiling , Transcriptome , Biomarkers, Tumor/genetics , Cluster Analysis , Cohort Studies , Adult , Malaysia/epidemiology , Aged , DNA Copy Number Variations
13.
Breast Cancer Res ; 26(1): 69, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38650031

ABSTRACT

BACKGROUND: We previously reported our phase Ib trial, testing the safety, tolerability, and efficacy of T-DM1 + neratinib in HER2-positive metastatic breast cancer patients. Patients with ERBB2 amplification in ctDNA had deeper and more durable responses. This study extends these observations with in-depth analysis of molecular markers and mechanisms of resistance in additional patients. METHODS: Forty-nine HER2-positive patients (determined locally) who progressed on-treatment with trastuzumab + pertuzumab were enrolled in this phase Ib/II study. Mutations and HER2 amplifications were assessed in ctDNA before (C1D1) and on-treatment (C2D1) with the Guardant360 assay. Archived tissue (TP0) and study entry biopsies (TP1) were assayed for whole transcriptome, HER2 copy number, and mutations, with Ampli-Seq, and centrally for HER2 with CLIA assays. Patient responses were assessed with RECIST v1.1, and Molecular Response with the Guardant360 Response algorithm. RESULTS: The ORR in phase II was 7/22 (32%), which included all patients who had at least one dose of study therapy. In phase I, the ORR was 12/19 (63%), which included only patients who were considered evaluable, having received their first scan at 6 weeks. Central confirmation of HER2-positivity was found in 83% (30/36) of the TP0 samples. HER2-amplified ctDNA was found at C1D1 in 48% (20/42) of samples. Patients with ctHER2-amp versus non-amplified HER2 ctDNA determined in C1D1 ctDNA had a longer median progression-free survival (PFS): 480 days versus 60 days (P = 0.015). Molecular Response scores were significantly associated with both PFS (HR 0.28, 0.09-0.90, P = 0.033) and best response (P = 0.037). All five of the patients with ctHER2-amp at C1D1 who had undetectable ctDNA after study therapy had an objective response. Patients whose ctHER2-amp decreased on-treatment had better outcomes than patients whose ctHER2-amp remained unchanged. HER2 RNA levels show a correlation to HER2 CLIA IHC status and were significantly higher in patients with clinically documented responses compared to patients with progressive disease (P = 0.03). CONCLUSIONS: The following biomarkers were associated with better outcomes for patients treated with T-DM1 + neratinib: (1) ctHER2-amp (C1D1) or in TP1; (2) Molecular Response scores; (3) loss of detectable ctDNA; (4) RNA levels of HER2; and (5) on-treatment loss of detectable ctHER2-amp. HER2 transcriptional and IHC/FISH status identify HER2-low cases (IHC 1+ or IHC 2+ and FISH negative) in these heavily anti-HER2 treated patients. Due to the small number of patients and samples in this study, the associations we have shown are for hypothesis generation only and remain to be validated in future studies. Clinical Trials registration NCT02236000.


Subject(s)
Ado-Trastuzumab Emtansine , Antineoplastic Combined Chemotherapy Protocols , Breast Neoplasms , Quinolines , Receptor, ErbB-2 , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/mortality , Breast Neoplasms/metabolism , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Ado-Trastuzumab Emtansine/therapeutic use , Middle Aged , Quinolines/therapeutic use , Quinolines/administration & dosage , Aged , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Biomarkers, Tumor/genetics , Mutation , Aged, 80 and over , Trastuzumab/therapeutic use , Trastuzumab/administration & dosage , Treatment Outcome , Neoplasm Metastasis
14.
JAMA Netw Open ; 7(4): e247862, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38652475

ABSTRACT

Importance: Pathogenic or likely pathogenic (P/LP) germline CDH1 variants are associated with risk for diffuse gastric cancer and lobular breast cancer (LBC) in the so-called hereditary diffuse gastric cancer (HDGC) syndrome. However, in some circumstances, LBC can be the first manifestation of this syndrome in the absence of diffuse gastric cancer manifestation. Objectives: To evaluate the frequency of germline CDH1 variants in women with the hereditary LBC (HLBC) phenotype, somatic CDH1 gene inactivation in germline CDH1 variant carriers' tumor samples, and the association of genetic profiles with clinical-pathological data and survival. Design, Setting, and Participants: This single-center, longitudinal, prospective cohort study was conducted from January 1, 1997, to December 31, 2021, with follow-up until January 31, 2023. Women with LBC seen at the European Institute of Oncology were included. Testing for germline CDH1, BRCA1, and BRCA2 genes was performed. Somatic profiling was assessed for germline CDH1 carriers. Main Outcomes and Measures: Accurate estimates of prevalence of germline CDH1 variants among patients with HLBC and the association of somatic sequence alteration with HLBC syndrome. The Kaplan-Meier method and a multivariable Cox proportional hazards regression model were applied for overall and disease-free survival analysis. Results: Of 5429 cases of primary LBC, familial LBC phenotype accounted for 1867 (34.4%). A total of 394 women with LBC were tested, among whom 15 germline CDH1 variants in 15 unrelated families were identified. Among these variants, 6 (40.0%) were P/LP, with an overall frequency of 1.5% (6 of 394). Of the 6 probands with P/LP CDH1 LBC, 5 (83.3%) had a positive family history of BC and only 1 (16.7%) had sporadic juvenile early-onset LBC. No germline BRCA1 and BRCA2 variants were identified in CDH1 carriers. An inactivating CDH1 mechanism (second hit) was identified in 4 of 6 explored matched tumor samples (66.7%) in P/LP germline carriers. The P/LP CDH1 LBC variant carriers had a significantly lower age at diagnosis compared with the group carrying CDH1 variants of unknown significance or likely benign (42.5 [IQR, 38.3-43.0] vs 51.0 [IQR, 45.0-53.0] years; P = .03). Conclusions and Relevance: In this cohort study, P/LP germline CDH1 variants were identified in individuals not fulfilling the classic clinical criteria for HDGC screening, suggesting that identification of these variants may provide a novel method to test women with LBC with early age at diagnosis and/or positive family history of BC.


Subject(s)
Antigens, CD , Breast Neoplasms , Cadherins , Germ-Line Mutation , Phenotype , Humans , Female , Breast Neoplasms/genetics , Middle Aged , Cadherins/genetics , Antigens, CD/genetics , Prospective Studies , Adult , Genetic Predisposition to Disease , Carcinoma, Lobular/genetics , Carcinoma, Lobular/pathology , Longitudinal Studies , Genotype , Aged
15.
Cells ; 13(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38667295

ABSTRACT

Decorin (DCN), a member of the small leucine-rich proteoglycan gene family, is secreted from stromal fibroblasts with non-cell-autonomous anti-breast-cancer effects. Therefore, in the present study, we sought to elucidate the function of decorin in breast stromal fibroblasts (BSFs). We first showed DCN downregulation in active cancer-associated fibroblasts (CAFs) compared to their adjacent tumor counterpart fibroblasts at both the mRNA and protein levels. Interestingly, breast cancer cells and the recombinant IL-6 protein, both known to activate fibroblasts in vitro, downregulated DCN in BSFs. Moreover, specific DCN knockdown in breast fibroblasts modulated the expression/secretion of several CAF biomarkers and cancer-promoting proteins (α-SMA, FAP- α, SDF-1 and IL-6) and enhanced the invasion/proliferation abilities of these cells through activation of the STAT3/AUF1 signaling. Furthermore, DCN-deficient fibroblasts promoted the epithelial-to-mesenchymal transition and stemness processes in BC cells in a paracrine manner, which increased their resistance to cisplatin. These DCN-deficient fibroblasts also enhanced angiogenesis and orthotopic tumor growth in mice in a paracrine manner. On the other hand, ectopic expression of DCN in CAFs suppressed their active features and their paracrine pro-carcinogenic effects. Together, the present findings indicate that endogenous DCN suppresses the pro-carcinogenic and pro-metastatic effects of breast stromal fibroblasts.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Decorin , Down-Regulation , Interleukin-6 , STAT3 Transcription Factor , Signal Transduction , Decorin/metabolism , Decorin/genetics , Humans , STAT3 Transcription Factor/metabolism , Female , Interleukin-6/metabolism , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Mice , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Down-Regulation/genetics , Heterogeneous Nuclear Ribonucleoprotein D0/metabolism , Fibroblasts/metabolism , Stromal Cells/metabolism , Cell Line, Tumor , Carcinogenesis/pathology , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Proliferation , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Breast/pathology , Breast/metabolism
16.
Oncol Nurs Forum ; 51(3): 263-274, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38668911

ABSTRACT

OBJECTIVES: To evaluate for associations of polymorphisms for potassium channel genes in patients with breast cancer who were classified as having high or low-moderate levels of cancer-related cognitive impairment (CRCI). SAMPLE & SETTING: 397 women who were scheduled to undergo surgery for breast cancer on one breast were recruited from breast care centers located in a comprehensive cancer center, two public hospitals, and four community practices. METHODS & VARIABLES: CRCI was assessed using the Attentional Function Index prior to and for six months after surgery. The attentional function classes were identified using growth mixture modeling. RESULTS: Differences between patients in the high versus low-moderate attentional function classes were evaluated. Six single nucleotide polymorphisms for potassium channel genes were associated with low-moderate class membership. IMPLICATIONS FOR NURSING: The results contribute to knowledge of the mechanisms for CRCI. These findings may lead to the identification of high-risk patients and the development of novel therapeutics.


Subject(s)
Breast Neoplasms , Cognitive Dysfunction , Polymorphism, Single Nucleotide , Self Report , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/complications , Breast Neoplasms/psychology , Middle Aged , Cognitive Dysfunction/etiology , Cognitive Dysfunction/genetics , Aged , Adult , Potassium Channels/genetics , Aged, 80 and over
17.
Oncol Nurs Forum ; 51(3): 199-208, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38668907

ABSTRACT

PURPOSE: To understand awareness of genetic and genomic testing, as well as decision-making, in women diagnosed with breast cancer. PARTICIPANTS & SETTING: 29 African American/Black and Latina/Hispanic women diagnosed with breast cancer. METHODOLOGIC APPROACH: A semistructured interview guide was used in focus groups conducted via videoconference. Transcripts were analyzed using thematic analysis. FINDINGS: Many of the women understood the concept of genetic testing to identify the BRCA1/BRCA2 variant, but none of them were aware of genomic testing and its implications for personalized medicine. Participants discussed provider and patient roles in treatment decision-making, identifying roles that the physician might play in treatment planning, from primary decision-maker to collaborator. IMPLICATIONS FOR NURSING: As the number of precision cancer treatments expands, patients must be able to comprehend the information provided to make informed decisions about their treatment. Providers should do a better job of explaining potential treatments so that patients feel they are part of the decision-making process. Addressing gaps in treatment access and uptake requires providers to prioritize patient engagement and understanding.


Subject(s)
Breast Neoplasms , Decision Making , Genetic Testing , Health Knowledge, Attitudes, Practice , Precision Medicine , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/psychology , Precision Medicine/methods , Precision Medicine/psychology , Middle Aged , Adult , Aged , Focus Groups , Hispanic or Latino/psychology , Black or African American/psychology
18.
J Mol Endocrinol ; 73(1)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38564418

ABSTRACT

The estrogen receptor-α (ER) drives 75% of breast cancers. On activation, the ER recruits and assembles a 1-2 MDa transcriptionally active complex. These complexes can modulate tumour growth, and understanding the roles of individual proteins within these complexes can help identify new therapeutic targets. Here, we present the discovery of ER and ZMIZ1 within the same multi-protein assembly by quantitative proteomics, and validated by proximity ligation assay. We characterise ZMIZ1 function by demonstrating a significant decrease in the proliferation of ER-positive cancer cell lines. To establish a role for the ER-ZMIZ1 interaction, we measured the transcriptional changes in the estrogen response post-ZMIZ1 knockdown using an RNA-seq time-course over 24 h. Gene set enrichment analysis of the ZMIZ1-knockdown data identified a specific delay in the response of estradiol-induced cell cycle genes. Integration of ENCODE data with our RNA-seq results identified that ER and ZMIZ1 both bind the promoter of E2F2. We therefore propose that ER and ZMIZ1 interact to enable the efficient estrogenic response at subset of cell cycle genes via a novel ZMIZ1-ER-E2F2 signalling axis. Finally, we show that high ZMIZ1 expression is predictive of worse patient outcome, ER and ZMIZ1 are co-expressed in breast cancer patients in TCGA and METABRIC, and the proteins are co-localised within the nuclei of tumour cell in patient biopsies. In conclusion, we establish that ZMIZ1 is a regulator of the estrogenic cell cycle response and provide evidence of the biological importance of the ER-ZMIZ1 interaction in ER-positive patient tumours, supporting potential clinical relevance.


Subject(s)
Breast Neoplasms , E2F2 Transcription Factor , Estrogen Receptor alpha , Gene Expression Regulation, Neoplastic , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Female , Cell Line, Tumor , E2F2 Transcription Factor/metabolism , E2F2 Transcription Factor/genetics , Cell Proliferation/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Protein Binding , Promoter Regions, Genetic/genetics , Signal Transduction , Cell Cycle/genetics , Prognosis
19.
Sci Rep ; 14(1): 7702, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565593

ABSTRACT

Utrophin (UTRN), known as a tumor suppressor, potentially regulates tumor development and the immune microenvironment. However, its impact on breast cancer's development and treatment remains unstudied. We conducted a thorough examination of UTRN using both bioinformatic and in vitro experiments in this study. We discovered UTRN expression decreased in breast cancer compared to standard samples. High UTRN expression correlated with better prognosis. Drug sensitivity tests and RT-qPCR assays revealed UTRN's pivotal role in tamoxifen resistance. Furthermore, the Kruskal-Wallis rank test indicated UTRN's potential as a valuable diagnostic biomarker for breast cancer and its utility in detecting T stage of breast cancer. Additionally, our results demonstrated UTRN's close association with immune cells, inhibitors, stimulators, receptors, and chemokines in breast cancer (BRCA). This research provides a novel perspective on UTRN's role in breast cancer's prognostic and therapeutic value. Low UTRN expression may contribute to tamoxifen resistance and a poor prognosis. Specifically, UTRN can improve clinical decision-making and raise the diagnosis accuracy of breast cancer.


Subject(s)
Breast Neoplasms , Animals , Mice , Humans , Female , Utrophin/metabolism , Mice, Inbred mdx , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Biomarkers , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Prognosis , Tumor Microenvironment
20.
BMC Cancer ; 24(1): 411, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566028

ABSTRACT

BACKGROUND: Deleterious BRCA1/2 (BRCA) mutation raises the risk for BRCA mutation-related malignancies, including breast, ovarian, prostate, and pancreatic cancer. Germline variation of BRCA exhibits substantial ethnical diversity. However, there is limited research on the Chinese Han population, constraining the development of strategies for BRCA mutation screening in this large ethnic group. METHODS: We profile the BRCA mutational spectrum, including single nucleotide variation, insertion/deletion, and large genomic rearrangements in 2,080 apparently healthy Chinese Han individuals and 522 patients with BRCA mutation-related cancer, to determine the BRCA genetic background of the Chinese Han population, especially of the East Han. Incident cancer events were monitored in 1,005 participants from the healthy group, comprising 11 BRCA pathogenic/likely pathogenic (PLP) variant carriers and 994 PLP-free individuals, including 3 LGR carriers. RESULTS: Healthy Chinese Han individuals demonstrated a distinct BRCA mutational spectrum compared to cancer patients, with a 0.53% (1 in 189) prevalence of pathogenic/likely pathogenic (PLP) variant, alongside a 3 in 2,080 occurrence of LGR. BRCA1 c. 5470_5477del demonstrated high prevalence (0.44%) in the North Han Chinese and penetrance for breast cancer. None of the 3 LGR carriers developed cancer during the follow-up. We calculated a relative risk of 135.55 (95% CI 25.07 to 732.88) for the development of BRCA mutation-related cancers in the BRCA PLP variant carriers (mean age 42.91 years, median follow-up 10 months) compared to PLP-free individuals (mean age 48.47 years, median follow-up 16 months). CONCLUSION: The unique BRCA mutational profile in the Chinese Han highlights the potential for standardized population-based BRCA variant screening to enhance BRCA mutation-related cancer prevention and treatment.


Subject(s)
BRCA1 Protein , Breast Neoplasms , Male , Humans , Adult , Middle Aged , BRCA1 Protein/genetics , Germ-Line Mutation , BRCA2 Protein/genetics , Genetic Predisposition to Disease , Early Detection of Cancer , China/epidemiology , Breast Neoplasms/diagnosis , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...